Driving the Bioeconomy Down Under

The Bioeconomy Down Under

AAKoukoulas - Portrait 2015 BW.jpg

by Alexander A. Koukoulas, Ph.D.

While the bioeconomy in the United States faces an uncertain future, other parts of the world are rapidly expanding initiatives to strengthen their bioeconomy industries. Take, for example, the Down Under State of Queensland. This coastal State in Australia has outlined a very ambitious goal to leverage its comparative advantages in geography, agriculture, and an advanced workforce to become a center for the production of bio-based fuels and chemicals. 

Expression of Interest

Recently, the Government of Queensland announced an invitation to bioeconomy developers to submit an Expression of Interest. The State is welcoming developers interested in developing manufacturing capabilities in Queensland to express their intent. The State will leverage its considerable resources to support development with the State, including direct financial support. 

Queensland - Australia's Bioeconomy Center

Queensland, the second-largest state in northeast Australia, has an emerging industrial biotechnology and bioproducts sector that is eager for growth. The State has clearly articulated its commitment to the bioeconomy in a detailed strategic plan that provides a framework for development and commercialization, including the creation of a Biofutures Industry Development Fund, a competitive funding pool to assist companies with reaching bankable feasibility. In addition, the State has worked to establish a robust feedstock infrastructure including sugarcane, agricultural and forestry waste, as well as sweet sorghum. This has lead to some early successes including three commercial biorefinery plants producing ethanol from molasses and sorghum and bio-diesel from animal fats and oils. 

While current mandates for renewable fuels are relatively modest—gasoline contains 3% ethanol, increasing to 4% in 2018—the intent is to both increase domestic targets and grow exports. Moreover, the State embraces the idea that the world is on the verge of a bioeconomy transition that will drive demands for bio-based chemicals. State officials look to World Economic Forum (WEF) predictions for biomass-derived fuels, energy, and chemicals to generate at least $230 billion to the global economy by 2020 and they are committed to be a participating in this value creation and realizing at least $1 billion in new economic activity in this sector within this time frame.

The State seems to be taking a broad view of the bioeconomy under the “Biofutures” framework, which refers to all segments of the industrial biotechnology and bioproducts sectors. Any innovative approach to converting sustainable organic and/or waste resources, rather than fossil fuels, is considered fair game. The State is encouraging the development of new feedstock value chains including: macro- and micro-algae, plantation forestry, and carbon-rich waste streams. Desired outcomes include the expanded production of bio-based chemicals, fuels, synthetic rubber, cosmetics, detergents and textiles.

Why Queensland?

  • Queensland has a subtropical and tropical climate providing ideal conditions to produce a range of feedstocks with high yields on a year-round basis. Specifically, the ability to competitively produce some of the world’s most energy-dense and productive feedstocks such as sugarcane, eucalypts and algae. Additional feedstock includes red and sweet sorghum, native grasses, crop stubble, cassava, agave, and pongamia.
  • A mature and modern agricultural industry with well-established supply chains from farm gate to markets. 
  • Connection to international markets through reliable and efficient infrastructure, including 7 bulk shipping terminals.
  • Ideal positioning at the gateway to the Asia-Pacific and close economic ties with expanding Asia-Pacific markets.
  • The State is also offering numerous incentives to stimulate investment in the bioeconomy sector, including the Biofutures Industry Development Fund, a repayable fund to help well-advanced industrial biotech proponents to get large-scale projects through the final stage of financial due diligence to secure financing from investors.

Interested in developing projects in Queensland? The deadline for submitting an Expression of Interest is January 18, 2017. Please contact us for additional information.

A Critical Look at Cellulosic Ethanol and Other Advanced Biofuels

A Critical Look at Cellulosic Ethanol and Other Advanced Biofuels by Alexander A. Koukoulas, Ph.D.

Over the last 10 years, the United States has made enormous investments in the pursuit of bio-based fuels the so-called “Second Generation” or 2nd Gen biofuels. Unlike 1st Gen biofuels—ethanol from corn starch—2nd Gen biofuels are derived from lignocellulosic sugars, those that come from woody biomass and agricultural sources, such as corn and wheat stover, and purpose-grown energy crops, like miscanthus and fast-growing poplar. 

The pursuit of 2nd Gen fuels has been motivated by several factors including: their inherently low-cost, at least from a theoretical standpoint; their potential for drastically reducing carbon emissions relative to 1st Gen Fuels; national security (less dependence on foreign oil); and job creation, especially in our rural communities. 

Unfortunately, while significant technical progress has been made in the last decade, 2nd Gen fuels, especially those produced using biochemical platforms, have yet to achieve commercial viability due to their inability to compete with conventional fuels on price. In fact, several years ago, researchers and developers alike recognized these technical challenges and began shifting their focus from lignocellulosic ethanol to “drop-in” fuels, such bio-butanol, in the hope that enhanced compatibility with the existing liquid fuels infrastructure would make these fuels more cost competitive. 

It should come as no surprise that these technical and commercial challenges have not gone unnoticed from a policy perspective. Delays in achieving widespread commercial success has had significant impact on the entire renewable fuels industry. An extensive analysis from the Government Accountability Office (GAO) issued last month stated that “the investments required to make these fuels more cost-competitive with petroleum-based fuels, even in the longer run, are unlikely in the current investment climate.” 

To better understand the current state of biochemical-based production pathways, we reviewed recent developments in the production of 2nd Gen biofuels produced under a number of biochemical routes. Our intent was to provide a state-of-the-art assessment of progress of advanced biofuels within three market applications: gasoline, middle distillates and aviation fuels (see table below).

Particular attention was paid to the success rate of genetic engineering and their commercialization prospects. What we found was that in spite of the significant progress made in the genetic engineering of microbes designed for advance biofuel production, titer and yield of these biomolecules are currently too low to allow these products to compete with their petroleum-derived equivalents. 

What surprised us was how far off we are relative to corn-based ethanol. For example, the highest reported yield for the best available alternative to starch-derived ethanol (iso-butanol derived from engineered E. Coli, is still one-eighth the level of achieved in the production of fuel ethanol from corn using that industrial workhorse, S. cerevisiae (see figure below). Moreover, high titers and yields from alternative routes are always reported using model sugar substrates, like glucose, not real-world hydrolysates derived from cellulosic biomass. Neither wild-type nor genetically-engineered microorganisms have been isolated or developed with all the necessary traits for the bulk production of advanced biofuels. And, unlike yeast and conventional ethanol fermentation, recycling of microbial cells are difficult in a lignocellulosic system and genetically engineered strains seem highly susceptible to contamination, which further increases operating costs.

Of course, upstream challenges with cellulosic ethanol are not completely solved either. Recovery of sugars at high concentration from a highly water-holding (hydrophilic) substrate is still challenging. And, the downstream challenges with fermentation are multi-fold including: the toxicity of the inhibitors to both microbes and enzymes; conversion of multiple sugars; and, enzyme and microbe recycling of the enzymes. 

As a result, attention was refocused from cellulosic ethanol to other fuel types, such as cellulose-based butanol, fatty acids, and isoprenoids. Based on current progress, it is evident that these also will not be commercially viable as the inherent complexity of micro-organism development for these pathways continues to present formidable technical barriers. Moreover, development is expected to be painstaking as the challenges with microbes used in these systems are multi-fold higher compared to even cellulosic ethanol.  

The question of inhibitors still presents an on-going challenge. As is well known, along with the presence of multiple sugars, lignocellulosic hydrolysates contain a spectrum of compounds, which are potentially toxic to the enzymes and/or microbes used in the bioconversion process. These toxic compounds or inhibitors are both naturally present in the lignocellulosic substrates and also process derived including the toxicity imparted by the final products. Techniques for in situ removal of inhibitors and strategies that can enhancing titer, such as gas stripping and solvent extraction, while marginally effective were found to add significant cost to production.

It has been suggested that the cell membrane is the primary target of toxicity as most of these molecules has been shown to fluidize the cell membrane. Increased membrane fluidity also results in uncontrolled transport of solutes that can decrease the proton flux across the membrane and cause leakage of amino acids and enzymes. Over-expressing products that are inherently toxic to the cell membrane appears to be the greatest limitation in achieving high yields. Despite extensive research efforts, there has been limited success in developing a commercial microbial strain for producing advanced biofuels that is both multiple-sugar consuming and inhibitor tolerant while obtaining an industrially acceptable titer and yield. As a result, substantial R&D in metabolic engineering and optimization will be needed to develop a suitable microbial strain capable of producing advanced biofuels from lignocellulose.

We concur with the GAO that lignocellulosic ethanol is far from being commercially viable given the present state of the technology, the unfavorable economic conditions and the policy uncertainty. We also seriously question the commercial viability of certain “drop-in” fuels. Imparting microbial cells with numerous and often competing functions without interfering with their basic physiological characteristics remains a formidable challenge. Key success criteria, like product yield, are still far from commercially relevant levels. Adding the complexity of the cellulosic substrate just raises the technical hurdle for commercialization.

The potential for expanding 1st Gen ethanol as a fuel and as a feedstock for chemicals production is enormous. In most cases, commercialization hurdles are a question of policy rather than technical readiness. However, with respect to 2nd Gen biofuels, only a renewed commitment to basic R&D can provide the tools needed to bridge the many technical gaps that stand between the current state and commercial success. Clearly, the need to fund R&D programs will be a difficult argument to make given the current economic and political climate. But, it is possible if a broad, strategic view is taken. The alternative—widespread defunding of programs—will be a huge set-back. As for commercial opportunities, given this analysis, only value-added specialty chemicals—those that are differentiated from their petroleum analogues—have the potential to be commercially viable at least in the short run.


Sapp, M., GAO report says advanced biofuel production far below RFS requirements, Biofuels Digest, November 29, 2016.

Government Accountability Office, Renewable Fuel Standard: Low Expected Production Volumes Make It Unlikely That Advanced Biofuels Can Meet Increasing Targets,

GAO-17-108. Nov 28, 2016. DOI: Nov 28, 2016.

Veettil, S. I., Kumar, L., and Koukoulas, A. A., Can microbially derived advanced biofuels ever compete with conventional bioethanol? A critical review, BioRes. 11(4), 10711-10755, 2016.

This article first appeared in the Thought Leadership section of Biofuels Digest on December 12, 2016.


Going Beyond Infrastructure

Going Beyond Infrastructure by Alexander A. Koukoulas, Ph.D.

In the first 100 days of a new Trump administration, we should expect to see the passage of a $1 trillion infrastructure bill. This should be welcomed news to many who have witnessed the neglect and decay of our critical infrastructure: our transportation networks and utility systems.

No one will argue that our infrastructure warrants major upgrades. Repairs to our bridges, roads, power and water systems will be of great benefit and we should not delay in executing these projects. While this will provide a short-term shot in the economic arm, we also need to consider the investments that will be required to make the U.S. more competitive and provide a sustainable basis for job creation in the long-term.

The positive relationship between a country’s R&D spending and its productivity growth is well-documented. Investment in R&D provides the innovations in science, healthcare, and engineering that define the new technology and manufacturing platforms of the future: platforms that create the jobs of the future, drives productivity, enhances our well-being and increases our standard of living.

Sadly, a recent assessment by the American Association of the Advancement of Science shows that federal R&D spending as a percentage of GDP has declined from 1.23% in 1976 to 0.78% in 2016 (see figure). In stark comparison, China now spends over 2% of its GDP on R&D, up from less than 0.6% in 1996. If the U.S. is to maintain and enhance the standard of living of its citizens, if it intends to create the jobs of the future, it must create a climate where R&D investments, both public and private, are seen as “strategic” investments. To this end, it would be tragic if our stimulus in infrastructure leads to further erosion in our investment in R&D and innovation.

Federal R&D.jpg

As a nation, we must recognize the link between the investment in R&D and the long-term benefits it makes to our standard of living, national security and global leadership. This has helped make the U.S. the most dynamic economy in the world. In planning for the future, let’s not forget what has driven American progress and let us work to place renewed priority on R&D investment.

DOI: November 25, 2016     © A2K Consultants

Torrefaction: A Pathway Towards Fungible Biomass Feedstocks?

Torrefaction: A Pathway Towards Fungible Biomass Feedstocks? by Alexander A. Koukoulas, Ph.D.

I recently gave an invited talk at the Advanced Bioeconomy Feedstocks Conference (June 2016), which discussed the potential of low-cost forest biomass resources for accelerating the growth of the bioeconomy. My central theme focused on the availability of at least 68 million dry tons of forest residuals that could be sustainably harvested and used in the generation of biomass power and bio-based chemicals. Add to this at least 60 million dry tons of forest biomass that could be sustainably derived from forest management programs conducted on our National Forests and the amount of inherently low-cost biomass resource that could be used to drive the bioeconomy is enormous. 

As with most biomass sourcing scenarios, forest biomass is challenged by the added cost of aggregating, handling, delivering and storing relatively low-density material across the supply chain. Compounding these challenges is the relatively high heterogeneity of the material in terms of its moisture content, chemical composition and energy density. 

One promising approach to overcoming these challenges is torrefaction, a mild pyrolyis process that removes low-grade volatile materials from biomass to produce a relatively uniform energy carrier that can be used as a solid fuel. When densified, the energy density of torrefied biomass approaches the energy content of low-rank coal. An added benefit is that torrefaction imparts water resistance to the material, thus obviating the need for expensive storage solutions. The result is a bio-based energy carrier that can be used as a drop-in replacement for coal. While the U.S. is rapidly phasing out coal-fired power generation facilities, the opportunities for using torrefied biomass in existing coal-fired facilities, in either “super-peaker” or co-firing modes are enormous. Of course, export markets, like the EU, are especially excited about torrefied biomass as it has the potential of lowering transportation costs and dramatically reducing expensive capital improvements that are typical in non-torrefied biomass power generation. 

 Torrefaction removes water and low-energy volatiles from wood to create a water-resistant energy carrier with high energy density. 

Torrefaction removes water and low-energy volatiles from wood to create a water-resistant energy carrier with high energy density. 

Biomass power generation is the only renewable option that can provide dispatchable, baseload energy delivery. Driving out cost through torrefaction could expand its use and adoption.  Beyond power generation, torrefied biomass is finding applications as a specialty material, such as a component in advanced composites. Recent technical advances in torrefaction process technology and market demand for this material could drive a whole new industry based on renewable biomass resources. 

DOI: June 16, 2016     © A2K Consultants 2016

Wet-laid forming in nonwovens: Where do we go from here?

Wet-laid forming in nonwovens: Where do we go from here? by Alexander A. Koukoulas, Ph.D.

AAKoukoulas - Portrait 2015 BW.jpg

At the Research, Innovation & Science for Engineered Fabrics (RISE® 2016) Meeting sponsored by INDA, I had the pleasure of speaking about the the production of nonwoven composites using wet-laid forming technologies, and providing thoughts about its future growth. For industry outsiders, most nonwovens are manufactured using either one of two main process technologies: dry-forming and wet-laid forming. The latter is a smaller subset of the two and is based on conventional papermaking process technologies. At its most fundamental level, wet-laid forming can be viewed as dewatering process wherein a dilute mix of fibers in suspension is transformed into a paper-like web. Products made using wet-laid forming include industrial papers, such as Nomex® paper and glass mats, and consumer products, such as disposable wipes. Highlights from this invited talk are presented below. 

 Wet-laid forming provides a high degree on freedom for fiber selection, additives and functional chemicals that can be used to create an array of engineered nonwoven composites to meet the demands of range of downstream applications.

Wet-laid forming provides a high degree on freedom for fiber selection, additives and functional chemicals that can be used to create an array of engineered nonwoven composites to meet the demands of range of downstream applications.

Nonwovens Market. The world of nonwovens represents a rapidly-growing $37 billion industry, delivering a range of product solutions that can meet the strictest of industrial and consumer demands. Nonwovens are ubiquitous—from personal hygiene products to automotive fabrics and filtration media—they are found in almost any product and market segment. And, the industry is growing, both organically and through the introduction of novel products that can meet the consumer demands of tomorrow.

Multiple Degrees of Freedom in Material Selection. From a new product development standpoint, the multiple degrees of freedom in wet-laid nonwovens design and engineering opens the door to product innovation and the development of unique differentiated products to meet consumer needs. Nonwoven products leverage a rich palate of materials options, including fibers, pigments and specialty chemicals, as well as a range of process delivery options, including former design and the addition of specialized unit operations such as hydroentangling systems, in-line coaters and calendering. From a materials selection perspective, nonwovens can be engineered from a range of material types including: natural and synthetic fibers, binder systems, inorganic fillers and catalysts. And, unlike dry-laid forming, wet-laid forming can use a range of high-performance staple fibers, such as aramid and carbon fiber, to develop unique products with exceptional utility. Lastly, wet-laid forming can leverage the hydrogen bonding potential of natural fibers to create lightweight materials of exceptional dry strength, while maintaining their ability to disperse upon rewetting. This explains the increasing use of wet-laid manufacturing platforms to produce consumer products, such as disposable wipes.

Improved Process Technologies. From an engineering standpoint, improvements in wet-laid forming technologies have been substantive enabling the deployment of machines with unprecedented scale. The largest papermachine in the world is 428 meters long, 11 meters wide, with operating speeds of 2000 meters per minute. Clearly, scale and the technologies that support scale, such as pressurized head box design, polymer-based machine clothing, extended-nip forming technologies, synchronous drives and machine control systems have contributed to impressive advances in productivity. This, combined with advanced water saving technologies, give wet-laid forming processing significant economic advantages over competitive forming types in certain product applications.

Demand for “Green” Products. Consumer expectations are shifting towards products that can mitigate environmental impact and those derived from sustainable, renewable resources. For example, at least 15 states and the District of Columbia have placed severe restrictions and in some cases outright bans of the sale of plastic bags. In this regard, expanded use of short natural fibers in the production of both consumer and industrial products alike will continue to drive the expanded use of wet-laid forming.

Expanding Population Growth. The world’s population is expected to increase from its current 7.4 billion to over 9.0 billion in 2050. While the percentage of younger individuals (age 19 or less) will decrease, the population of those over 65 years of age will significantly increase. An aging population will bring about demands for new products and specialized services. In addition, a rising middle class will present opportunities for product growth across all segments, especially in food packaging and consumer products. Moreover, secular trends that place increasing importance on sustainability and wealth creation, including a rising consumer class in developing countries, will be strong catalysts to a growing demand for nonwovens products. As a result, market opportunities for nonwoven products are expected to remain strong.

On the Horizon. There are many exciting new technologies under development that have the potential for redefining wet-laid forming, improving efficiency and performance, and making it more cost competitive. For example, foam forming technology, which can displace up to 80% of water used in the manufacturing process, is seen as a real opportunity for both transforming the cost of production and imparting novel product properties, such as higher bulk. Wet-laid forming is ideally suited to incorporate nanocellulose, a new class of renewable materials with exceptional strength. Wet-laid forming combined with the in situ production of nanocellulose opens up tremendous opportunities for the development of novel composite structures and coatings.

In summary, wet-laid forming is a well-established technology. As such, it presents little technical risk to project developers looking to expand their product lines, especially in growing market segments such as consumer products and disposable wipes. Technology barriers, such as high water intensity, have been largely eliminated and machine configurations benefit from large economies of scale. Wet-laid forming provides new product developers with exceptional degrees of freedom that can enable the design and production of composites using a range of high performance fibers. It provides a platform for expanding utilization of natural fibers including nanocellulose in novel product applications, such as battery separators and bio-based composites. As such, wet-laid forming is expected to see expanded growth as a manufacturing platform in both industrial and consumer segments.

Postscript. Since presenting this invited talk, my long-time collaborator, Dr. Martin Hubbe of NC State University, and I published a comprehensive review of wet-end chemical approaches to wet-laid nonwovens manufacturing. In this review, we discuss scientific advances in the field and discuss the many strategies for optimizing wet-end chemistry and the various process technologies used to produce nonwovens. Although both synthetic and natural fibers are considered, emphasis is placed on applications where cellulosic fibers are a significant component of the nonwoven product, such as dispersable wipes. Topics covered include: fiber properties and surface chemistry; fiber dispersion; hydroentangling (spunlacing); and foam forming. This article appears in the May 2016 issue of BioResources. To obtain a full PDF copy of the article, click here.

DOI: April 29, 2016     © A2K Consultants 2016